论文无忧 | 论文发表 | 手机版 | 二维码

《企业导报》杂志
本刊往期
您当前的位置:首页 杂志文章 微电网的基本结构和关键技术
微电网的基本结构和关键技术_杂志文章
微电网的基本结构和关键技术
发布时间:2019-12-07浏览次数:37返回列表

陈 悦

(华北电力大学电气与电子工程学院,北京 102206;余杭供电局,浙江 杭州 311100)

一、微电网的结构

微型电网相对于大电网来说,从某种意义上讲,也可以算是一个孤岛电网,微型电网中,包含有多个分布式电源和储能元件,它通[来自WwW.lw5u.com]过PCC点和大电网相连,通过系统元器件向大电网负荷供电。分布式电源DG的种类很多,一般有风力发电、太阳能光伏发电、微型燃料电池、微型燃气轮机等等、小型水电、小型电热联产。典型的微型电网基本结构为放射状,内含A、B、C三条馈线;三条馈线通过PCC点(静态开关)和配电系统相接;期待实现微电网在孤岛模式和并网模式中稳定、平滑、无缝的转换;以及实现电能的灵活传输。馈线A、B两个重要的负荷均为敏感电源;馈线C是普通电源也是一个非敏感性的负荷。图中有太阳能光伏电池、微型燃气轮机及燃料电池3种分布式电源向配电网供电;微电网最强大的地方就在于,当主配网的电能质量下降或不满足使用需求时,例如主配网故障的时候,微电网能孤岛独立运行,继续满足用户的用电需求。如果微电网自身不能继续保证优质电能,那么可以断开C馈线上的负荷,待故障消除,电能质量恢复后,主断路器重新合闸,继续保证系统过渡回并网模式。

二、微电网的元件

(1)微型电源。微型电网中的微型电源一般是指,安装在微电网内部的分布式电源和储能装置相结合的装置,而在实际应用中,分布式电源的种类有很多种,其中主要的有:第一,微型燃气轮机。微型燃气轮机的发电效率很高,可以达到30%,一般以天然气、甲烷、汽油等为燃料;微型燃气轮机的体积小、质量小、效率高,是目前最成熟的分布式电源。第二,太阳能光伏发电。太阳能光伏电池是将太阳能转化成电能,十分清洁,毫无疑问是我们发展绿色能源的重要部分,即便现在光纤的制造成本很高,但是其前景依旧非常乐观。第三,风力发电。风力发电机分为风力机和发电机,风速作用在风力机上,产生了扭力,驱动轮毂旋转,通过齿轮箱高速轴、刹车和连轴器于异步发电机相连,从而发电运行。第四,微型燃料电池。微型燃料电池是利用[来自www.lW5u.coM]富含氢元素的燃料和空气中的氧气相结合产生水,氢离子和阳离子的定向移动形成外电流,将化学能转化成为电能。燃料电池通常分为:燃料处理、化学反应堆以及电力电子换流控制器几个部分。燃料电池清洁、高效,效率几乎是传统电厂的2倍,而产物是清洁的水。燃料电池的安装周期短、安装的位置灵活。(2)微型电网的储能装置。对于风力发电、太阳能光伏电池来说,他们的输出受很多的约束,具有明显的周期性和不可预测性;负荷的随机性也很大。那么就需要利用储能装置来功率的波动。当微电源发出的功率有多余的时候,多余的能量可以储存在电池中;当微电网处于孤岛运行状态时,储能设备对其起到一次调频的作用,是微电网能否正常运行的关键因素。

三、微电网的主要技术

(1)微电网的运行。微电网系统有2种运行模式,并网模式和孤岛模式。存在着3种状态:连联网运行、孤岛运行和两者之间互相切换的暂态。并网模式是指,微电网与大电网并网运行,当微电网自身电能多余时,向大电网供应电能,当自身电能不足时,则由大电网补偿微电网。实验证明:合理的控制策略,可以实现并网和孤岛2种模式的平滑过渡及转化。孤岛运行模式是指,当微电网内部的电能质量不合要求或者主电网发生故障时,微电网和主电网断开,形成孤岛运行模式,孤岛模式的正常运行,才为系统提供了更好的可靠性。当微电网运行在并网和孤岛2种模式之间的暂态时,稳定是最重要的问题。如果在并网模式下运行,微电网吸收或输出电能,主电网突然故障,微电网由联网模式突然切换到孤岛模式,那么微电网内部产生的电能和负荷间的需求将会不平衡,从而导致系统的不稳定。一般来说,微型电网的主要目标是:调节微电网内馈线潮流,对无功和有功进行独立解耦控制;调节微型电源接口电压,维持电压的稳定;当处于孤网运行模式的时候,能够保证每个微型电源能快速、正确的响应;根据需求,能自主地实现和主网的分离或者再并网。(2)微电网的控制手段。近几年来,常用的微电网控制手段方法包括以下几个:第一,基于电力电子基础下的即插即用与对等控制。该方法依据控制目标,利用下垂特性曲线对微电网进行控制,将系统内部的功率通过p/f下垂特性分配到每个微电源去,保证其动态平衡,也使得在孤网模式下,微电网内电力供给平衡。但是,该方法不考虑系统内传统电机的二次调频问题。当系统遭到破坏或干扰,系统非常难保证系统内部的频率。第二,微电网功率管理控制。该方法通过对不同模块的控制,间接对有功和无功的单独控制,能满足系统内P/Q、U/F等多种控制的需要;特别在调频时,使用频率恢复算法;其次,加入了无功补偿器,使得功率管理系统能很好的满足不同无功功率的需求,并采取了多种控制法。第三,基于多代理技术的微电网控制。这个方法将传统的电力系统中的多Agent系统应用到微电网控制系统中;多Agent系统具有自治性,可以适应微电网分散控制的需要,提供了可嵌入人工智能化的控制系统。

本文简单介绍了微电网的基本结构和关键技术。对微电网的基本构成进行了简要的介绍,包括微电网内微型电源种类的介绍,储能元件的介绍。也对微电网的主要技术进行了介绍,包括对微电网的运行目标、运行特点的介绍。通过本文,对微电网有一个系统的了解。

您对《微电网的基本结构和关键技术》一文的评论